Когда необходимо подключить к контроллеру два десятка светодиодов или еще чего на помощь приходят сдвиговые регистры. Ну не тратить же драгоценные пины микроконтроллера на это дело :-) Для эксперимента купил сдвиговый регистр 74HC595 и в этой небольшой статье покажу как с ним работать при помощи самого крохотного контроллера Tiny13.


Посмотрим что из себя представляет эта микруха. Распиновка на рисунке ниже:

74HC595 распиновка

С первого взгляда кажется немного запутано, будем разбираться. Начнем с назначения выводов:

  • Q0…Q7 – выходы которыми будем управлять. Могут находится в трёх состояниях: логическая единица, логический ноль и  высокоомное Hi-Z состояние
  • GND – земля
  • Q7′ – выход предназначенный для последовательного соединения регистров.
  • MR – сброс регистра.
  • SH_CP – вход для тактовых импульсов
  • ST_CP – вход «защёлкивающий» данные
  • OE – вход переводящий выходы из HI-Z в рабочее состояние
  • DS – вход данных
  • VCC – питание 5 вольт

Для управления нам вполне достаточно всего лишь трёх  выводов а именно: SH_CPST_CP, DS.

Как работает регистр
Все не так сложно, как кажется на первый взгляд.  Когда на тактовом входе SH_CP появляется логическая единица, регистр считывает бит со входа данных DS и записывает его в самый младший разряд. При поступлении на тактовый вход следующего импульса, всё повторяется, только бит записанный ранее сдвигается на один разряд, а его место занимает вновь пришедший бит. Когда все восемь бит заполнились и приходит девятый тактовый импульс то регистр снова начинает заполнятся с младшего разряда  и всё повторятся вновь. Что бы данные появились на выходах Q0…Q7 нужно их «защёлкнуть». Для этого необходимо подать логическую единицу на вход ST_CP. Что бы мы не делали с регистром, данные на выходах не изменятся пока мы вновь не «защёлкнем» их. Отсюда кстати пошло название «регистр-защёлка». Теперь пару слов о других выводах микросхемы. Когда на входе OE лог 1 то выходы находятся в высокоомном состоянии. Когда подаем на этот вход логический 0, тогда выходы работают в нормальном режиме. MR – сбрасывает регистр устанавливая все выходы Q0…Q7 в состояние логического нуля. Для осуществления сброса нужно подать логический ноль на этот вход. После этого «защёлкнуть» данные. В нормальном состоянии на этом выводе должна находится логическая единица. Q7′ предназначен для последовательного соединения сдвиговых регистров. Можно соединить хоть десяток штук!

Программное обеспечение
Для того чтоб управлять этим регистром была написана небольшая библиотека. Вы без труда сможете использовать её в любом своем проекте. Состоит она всего навсего из одной процедуры ShiftRegOut перед вызовом которой нужно загрузить в регистр temp то что должно быть записано в сдвиговый регистр. Код неплохо прокомментирован, поэтому вопросов я думаю не будет. Если будут то прошу задавать их в комментариях. Если паять совсем лениво то можно собрать тестовую схемку в симуляторе Proteus. Файл симуляции прилагается. Если же хочется попробовать в настоящем железе то вот сама схема:

74HC595 схема

Кстати существуют регистры работающие на вход с параллельной загрузкой и последовательным выводом. Если требуется чтобы в ходе работы программы  назначение пина можно было менять, (делать входом или выходом) то применяют так называемые расширители портов. Они обычно имеют интерфейс i2c но слишком дороги и малораспространенны во всяком случае у нас. Так что сдвиговые регистры наше все =)
Ну и напоследок фото того на чем это всё проверялось и отлаживалось:

74HC595 отладка

Кстати очень удобно для отладки использовать мини макетки для SOIC корпусов. Рекомендую взять на заметку =). Все вопросы складываем в комментарии.

Файл симуляции + исходник
Чисто по приколу записал видео всего этого безобразия